TCTAP 2018 Endovascular Symposium Heavily Calcific Long Femoropopliteal Lesions: Soften the Hardness

Lesion Modification with Turbohawk is Better

Pil Hyung Lee, MD

Heart Institute, University of Ulsan College of Medicine, Asan Medical, Seoul, Korea

Area of Concerns for DCBs

Limitations of DCB

DCB is based on Angioplasty

Addressed by atherectomy

Mechanically recanalize the vessel without overstretch

Provisional Stent Rate increases with Lesion Length

Calcium May Limit Drug Effect

Reduce the likelihood of b ail-out stenting and prese rve the native vessel - % S tent Rate in DEFINITIVE se ries was <=3%

Removes potential barriers for drug uptake

Atherectomy enables us to shift from treating dissections and recoil to preventing it

Treatment Algorithm

Available Devices

Directional Atherectomy

- Hawk portfolio: Silver Hawk, Turb
 oHawk, & HawkOne (Medtronic)
- Pantheris (Avinger)

Orbital Atherectomy

- Diamondback 360 (CSI)

Rotational Atherectomy

JetStream (Boston Scientific)
Phoenix (Volcano)

Photoablation Atherectomy
Turbo-Elite & Turbo-Tandem-(Spectranetics)

Directional Atherectomy

DEFINITIVE LE and Ca²⁺: Baseline Lesion Characteristics SilverHawk, TurboHawk

	DEFINIT	DEFINITIVE Ca ^{2+ [2]}		
Lesion #	743 (RCC 1-3)	279 (RCC 4-6)	168	
Location SFA PA Infrapop	72.1% (536) 15.3% (114) 12.5% (93)	48.4% (135) 17.2% (48) 34.4% (96)	89.3% (150) 10.7% (18)	
RVD (mm)	4.3 ± 1.1	3.7 ± 1.3	4.9 ± 0.9	
% Stenosis	72.7% \pm 18.1	75.9% \pm 20.0	76.5% \pm 15.4	
Length (cm)	7.5 ± 5.3	7.2 ± 5.5	3.9 ± 2.7	
Occlusion	17.4% (129/741)	29.9% (83/278)	17.9% (30)	
Ca ²⁺ None-Mild Mod-Severe	37.1% (275/742)	37.1% (103/278)	6.0% (10) 94.1% (158)	

Boldfaced values indicate statistical significance (p < 0.05). Definitions, e.g. Ca²⁺, may differ betwee n studies.

McKinsey J, et al. JACC Cardiovasc Interv 7(8):923-33:2014.
 Roberts D, et al. Catheter Cardiovasc Interv 84(2):236-44:2014.

Directional Atherectomy

DEFINITIVE LE and Ca²⁺: Outcomes

SilverHawk, TurboHawk

	DEFINIT	IVE LE ^[1]	DEFINITI	VE Ca ^{2+ [2]}	
Patient #	598 (RCC 1-3)	598 (RCC 1-3) 201 (RCC 4-6)		133	
Lesion #	743	743 279		168	
Bail-out Stent	3.2%	3.2% (33/1022)		(7/169) ¹	
MAE (30d)	1.0% (6/598)	1.0% (6/598) 3.5% (7/201)		(9/131)	
1° Patency (1y)	78.0%	78.0% 71.0%		NR ²	
1º Patency Def	$PSVR \le 2.4 by DUS$		1	NR ²	
TLR	NR	NR NR		NR	

NR = Not Reported. Boldfaced values indicate statistical significance (p < 0.05).

- 1. Site-reported lesions totaled 169 while Core Lab evaluated lesions totaled 168 (two site-reporte d lesions were considered one diffuse lesion by the Core Lab). Provisional stent rate was report ed by Roberts, et al., with respect to the site-reported lesion number, i.e. 169 not 168.
- 2. Primary endpoint for DEFINITIVE Ca²⁺ was safety; patency was not evaluated.

DEFINITIVE AR

Pilot study to detect trends in treatment differences between groups and designe d to assess the effect of treating lesions with DA followed by DCB (DAART) DAART: Directional Atherectomy + Anti-Restenotic Therapy

INCLUSION CRITERIA

- RCC 2-4
- ≥ 70% stenosis of SFA and/or popliteal artery
- Lesion Length 7-15cm
- Reference Vessel ≥ 4mm and ≤ 7mm

EXCLUSION CRITERIA

- In-stent restenosis
- Aneurysmal target vessel
- Multiple lesions in target limb that require treatment

DEFINITIVE AR

Baseline Lesion Characteristics

SilverHawk and TurboHawk Directional Atherectomy plus Paccocath DCB

		DEFINITIVE AR	
	Random DAART	Random DCB	Ca ²⁺ -DAART
Lesion #	48	54	19
Lesion Length (cm)	11.2	9.7	11.9
Diameter Stenosis (%)	82%	85%	88%
RVD (mm)	4.9	4.9	5.1
Calcification	70.8%	74.1%	94.7%
Severe calcification	25.0%	18.5%	89.8%

Reported values per Core Lab. Bold-faced values indicate statistical significance (p < 0.05).

DEFINITIVE AR: 12-mo Patency via DUS

Potential Advantage Emerging in Long and Severely Calcified Lesions

Per Core Lab Assessment. "All Severe Ca++ " group includes all patients treated with DA+DCB ther apy including randomized and non-randomized patients with severe calcium.

DEFINITIVE AR: 12-mo Patency via Angio

Same trend:

Potential Advantage Emerging in Long and Severely Calcified Lesions

Results for all patients who returned for angiographic follow-up.

Cioppa, et al., DAART Study

Prospective, single-center study to c haracterize conjunctive DA + DCB us e in severely calcified lesions

Procedural Characteristics (n=30)

- Mean lesion length: 115mm
- Total occlusion: 13.3% (4)
- < 30% residual stenosis achieved i n all cases
- No procedure-related AEs
- Provisional stenting rate: 6.7% (2) [due to flow limiting dissections]

12-mo Results (n=30)

- 1° patency (PSVR<2.5): 90% (27)
- TLR: 10% (3)
- Limb salvage: 100% (12 CLI Pts)

Authors note DA+DCB may be a strategy for treating severely calcified lesions of the femoropopliteal artery

Cioppa A, et al. Cardiovasc Revasc Med 13:219-23 (2012).

When and Where? Devices are not Equal for Vessel Prep

Anatomical Location

DA	RA	ΟΑ	Laser	Location
Х	Х	Х	Х	Above-knee
Х	Х	Х	Х	Below-knee

Plaque Composition

	tion
X X X Ca ²⁺	
X X X Soft	
X X Thrombu	S

Lesion Morphology

Morphology	DA	RA	OA	Laser
Focal	Х			
СТО	Х	Х		Х
Eccentric	Х			
Long Ca ²⁺⁺	?	X	х	

In-Stent Restenosis

ISR	DA	RA	ΟΑ	Laser
Indication				Х

Individual operator <u>experience</u> and <u>preference</u> are likely the primary influencers in device selection.

Long Heavily Calcific F-P Lesion

Problems

- Not front cutting
- Nosecone has to pass through the lesion, sometime needs ballooning, rarely doesn't work
- Have to repeat the cutting process

HAWKONE[™] SYSTEM

Improved Crossing and Deliverability

- Reduction overall tip diameter
- Long, tapered distal tip provides enhanced deliverability

TurboHawk 7F High Efficiency Cutter – 2.7 mm

HawkOne System 7F – 2.6 mm

HawkOne[™] Device Technology Spotlight

Three enhancements lead to superior performance in calcium

I) Rotational Speed

2) Robust Drive Shaft

3) Blade Design

50% increase in rotational speed HawkOne Cutter Driver: 12,000 RPMs TurboHawk Cutter Driver: 8,000 RPMs

25% improvement in tor sional performance Slightly larger OD (0.05 mm) HawkOne[™] Cutter 4 contoured blades

Calcified Long F-P Lesion In Reality

Circumferential Distribution of Calcium is Mostly Eccentric

CardioVascular Research Foundation

Fanelli et al. Cardiovasc Intervent Radiol (2014) 37:898-907)

Greater Directional Control

Device	Jetstream (Boston Scientific Corporation)	Phoenix (Philips Volcano)	HawkOne (Medtronic)	Rantheris (Avinger, Inc.)	Turbo-Elite Laser (Spectranetics Corporation)
Atherectomy Type	Rotational	Rotational	Directional	Directional	Photoablative
Eccentric lesion	Х	Х	XX	XX	
Soft/fibrotic plaque	XX	XX	XX	XX	XX

HawkOne™

Device Jog

TurboHawk

Device Jog

- Consistent contact with the lesion, with improved wall apposition
- Cutter angle is comparable for all 7F devices

Top: H1-LX Bottom: TH LX-C

Cutter Angle Comparison: Simulated 7 mm Vessel

Achieve Maximal Lumen gain

De Novo Lesion

After Initial OA

After Subsequent DA

Average Area of Lumer 7.0 mm²

Average Area of Lumen 8.2 mm², 17% gain

Average Area of Lumen 15.0 mm², 114% gain

More Lumen Gain After Atherectomy Higher Patency Rate

CardioVascular Research Foundation

Primary Effectiveness Endpoint:

Primary patency (PSVR <_2.4) and freedom from CD-TLR at one-year in subjects with long, moderate and severely calcified symptomatic femoropopliteal lesions and/or occlusions after treatment with DA + DCB

Primary Safety Endpoint:

Freedom from (MAEs) defined as freedom from flow-limiting dissections (D-F), vessel perforations requiring stenting or stentgrafts, unplanned amputation, intra-procedure distal atheroembolization and clinically-driven TVR in subjects with long, moderate and severely calcified FP lesions and/or occlusions through 30-day follow-up visit.

Co-Principal Investigators

Krishna Rocha-Singh, MD Chief Scientific Officer Prairie Heart Institute of Illinois

Brian DeRubertis MD, FACS Associate Professor of Surgery UCLA Division of Vascular Surgery

Consent 250 subjects

- Goal Enrollment 150 subjects
- 10 U.S. Sites
 Lesion length 8-18cm
 Occlusion length 6-10cm
- 3 German SitesLesion length up to 25cm

REALITY Update (9/11/17)

- Eight U.S. sites/ 3 German Sites activated
- All sites have begun enrollment
- 39 patients enrolled

A Real Efficient Device

Atherectomy device	Capital equipment required?	Capital equipment	Disposables		
Diamondback	Yes	I			
Excimer Laser	Yes				
Jetstream	Yes				
Crosser	Yes	-			
	Battery drive	en motor unit witl	hin the handle		

Thank you

