TCTAP 2018 Endovascular Symposium Heavily Calcific Long Femoropopliteal Lesions: Soften the Hardness

Leston Modfitoaton whth Turbohawk is Better

Pil Hyung Lee, MD

Heart Institute, University of Ulsan College of Medicine, Asan Medical, Seoul, Korea

Area of Concerns for DCBs

Limitations of DCB
Addressed by atherectomy
DCB is based on Angioplasty

Mechanically recanalize the vessel without overstretch

Provisional Stent Rate increases with Lesion Length

Reduce the likelihood of b ail-out stenting and prese rve the native vessel - \% S tent Rate in DEFINITIVE se ries was <=3\%

Calcium May Limit Drug Effect

Removes potential barriers for drug uptake

Atherectomy enables us to shift from treating dissections and recoil to preventing it

Treatment Algorithm

Available Devices

Directional Atherectomy

- Hawk portfolio: Silver Hawk, Turb oHawk, \& HawkOne (Medtronic)

- Pantheris (Avinger)

Orbital Atherectomy

- Diamondback 360 (CSI)

Rotational Atherectomy - JetStream (Boston Scientific)

- Phoenix (Volcano)

Photoablation Atherectomy

- Turbo-Elite \& Turbo-Tandem (Spectranetics)

Directional Atherectomy

DEFINITIVE LE and Ca²+: Baseline Lesion Characteristics
StiverHawk, TurboHawk

	DEFINITIVE LE [1]		DEFINITIVE Ca ${ }^{2+[2]}$
Lesion \#	743 (RCC 1-3)	279 (RCC 4-6)	168
$\begin{array}{r} \text { Location SFA } \\ \text { PA } \\ \text { Infrapop } \end{array}$	$\begin{array}{cc} 72.1 \% & (536) \\ 15.3 \% & (114) \\ 12.5 \% & (93) \end{array}$	$\begin{array}{cc} 48.4 \% & (135) \\ 17.2 \% & (48) \\ 34.4 \% & (96) \end{array}$	$\begin{array}{cc} 89.3 \% & (150) \\ 10.7 \% & (18) \end{array}$
RVD (mm)	4.3 ± 1.1	3.7 ± 1.3	4.9 ± 0.9
\% Stenosis	$72.7 \% \pm 18.1$	75.9\% ± 20.0	$76.5 \% \pm 15.4$
Length (cm)	7.5 ± 5.3	7.2 ± 5.5	3.9 ± 2.7
Occlusion	17.4\% (129/741)	29.9\% (83/278)	17.9\% (30)
Ca^{2+} None-Mild Mod-Severe	37.1\% (275/742)	37.1\% (103/278)	$\begin{array}{cc} 6.0 \% & (10) \\ 94.1 \% & (158) \end{array}$

Boldfaced values indicate statistical significance ($\mathrm{p}<0.05$). Definitions, e.g. Ca^{2+}, may differ betwee n studies.

Directional Atherectomy

DEFINITIVE LE and Ca²+: Outcomes

SilverHawk, TurboHawk

	DEFINITIVE LE [1]	DEFINITIVE Ca ${ }^{2+}$ [2]		
Patient \#	$598($ RCC 1-3)	201 (RCC 4-6)	133	
Lesion \#	743	279	168	
Bail-out Stent	3.2%	$(33 / 1022)$	4.1%	$(7 / 169)^{1}$
MAE (30d)	$1.0 \%(6 / 598)$	$3.5 \%(7 / 201)$	6.9%	$(9 / 131)$
1^{0} Patency (1y)	78.0%	71.0%	NR 2	
1^{0} Patency Def	PSVR ≤ 2.4 by DUS	NR2		
TLR	NR	NR	NR	

NR = Not Reported. Boldfaced values indicate statistical significance ($\mathrm{p}<0.05$).

1. Site-reported lesions totaled 169 while Core Lab evaluated lesions totaled 168 (two site-reporte d lesions were considered one diffuse lesion by the Core Lab). Provisional stent rate was report ed by Roberts, et al., with respect to the site-reported lesion number, i.e. 169 not 168.
2. Primary endpoint for DEFINITIVE Ca^{2+} was safety; patency was not evaluated.

DEFINITIVE AR

Pilot study to detect trends in treatment differences between groups and designe d to assess the effect of treating lesions with DA followed by DCB (DAART)

DAART: Directional Atherectomy + Anti-Restenotic Therapy

```
Inclusion CriteriA
- RCC 2-4
- }\quad\geq70% stenosis of SFA and/or
    popliteal artery
- Lesion Length 7-15cm
- Reference Vessel }\geq4\textrm{mm}\mathrm{ and }
    7mm
```


Exclusion Criteria

- In-stent restenosis
- Aneurysmal target vessel
- Multiple lesions in target limb that require treatment

General and Angiographic
Criteria Assessment
Lesion severely calcified?*

DEFINITIVE AR

Baseline Lesion Characteristics
 SilverHawk and TurboHawk Directional Atherectomy plus Paccocath DCB

	DEFINITIVE AR		
	Random DAART	Random DCB	Ca$^{2+}$-DAART
Lesion \#	48	54	19
Lesion Length (cm)	11.2	9.7	11.9
Diameter Stenosis (\%)	82%	85%	88%
RVD (mm)	4.9	4.9	5.1
Calcification	70.8%	74.1%	94.7%
Severe calcification	25.0%	18.5%	89.8%
Repre			

Reported values per Core Lab. Bold-faced values indicate statistical significance ($\mathrm{p}<0.05$).

DEFINITIVE AR: 12-mo Patency via DUS

Potential Advantage Emerging in Long and Severely Calcified Lesions

DEFINITIVE AR: 12-mo Patency via Angio

Same trend:
Potential Advantage Emerging in Long and Severely Calcified Lesions

Results for all patients who returned for angiographic follow-up.

Cioppa, et al., DAART Study

Prospective, single-center study to c haracterize conjunctive DA + DCB us e in severely calcified lesions

Procedural Characteristics ($\mathrm{n}=30$)

- Mean lesion length: 115 mm
- Total occlusion: 13.3\% (4)
- < 30\% residual stenosis achieved i n all cases
- No procedure-related AEs
- Provisional stenting rate: 6.7\% (2) [due to flow limiting dissections]

Combined treatment of heavy calcified femoro-popliteal lesions using directional atherectomy and a paclitaxel coated balloon: One-year single centre clinical results? Angelo Cioppa ${ }^{*}$. Luzenio Stabile, Grigore Popusoi, Laigi Salemme, Linda Cota, Armando Pucciarelli Vitroio Ambrosini Glovanus Sorropago, Tullio Tesorio. Alessld Agresta Giancarlo Filamino. Paolo Rubino

12-mo Results ($\mathrm{n}=30$)

- 1° patency (PSVR<2.5): 90% (27)
- TLR: 10\% (3)
- Limb salvage: 100\% (12 CLI Pts)

Authors note DA+DCB may be a strategy for treating severely calcified lesions of the femoropopliteal artery

When and Where? Devices are not Equal for Vessel Prep

Anatomical Location				
DA	RA	OA	Laser	Location
X	X	X	X	Above-knee
X	X	X	X	Below-knee

Plaque Composition

DA	RA	OA	Laser	Composition
X	X	X		Ca^{2+}
X	X		X	Soft
	X		X	Thrombus

Lesion Morphology

Morphology	DA	RA	OA	Laser
Focal	X			
CTO	X	X		X
Eccentric	X			
Long Ca ${ }^{2++}$	$?$	X	X	

In-Stent Restenosis

ISR	DA	RA	OA	Laser
Indication				X

Individual operator experience and preference are likely the primary influencers in device selection.

Long Heavily Calcific F-P Lesion

Problems

- Not front cutting
- Nosecone has to pass through the lesion, sometime needs ballooning, rarely doesn't work
- Have to repeat the cutting process

HAWKONETM SYSTEM

Improved Crossing and Deliverability

- Reduction overall tip diameter
- Long, tapered distal tip provides

HawkOne ${ }^{\top M}$ Device Technology Spotight

Three enhancements lead to superior performance in calcium
I) Rotational Speed

50\% increase in rotational speed
HawkOne Cutter Driver: 12,000 RPMs
TurboHawk Cutter Driver: 8,000 RPMs
2) Robust Drive Shaft

25\% improvement in tor sional performance Slightly larger OD (0.05 mm)
3) Blade Design

HawkOne ${ }^{\text {TM }}$ Cutter

4 contoured blades

Calcified Long F-P Lesion In Reality

Circumferential Distribution of Calcium is Mostly Eccentric

Fanelli et al. Cardiovasc Intervent Radiol (2014) 37:898-907)

Greater Directional Control

- Consistent contact with the lesion, with improved wall apposition
- Cutter angle is comparable for all 7F devices

Cutter Angle Comparison: Simulated 7 mm Vessel

Top: H1-LX Bottom: TH LX-C

Achieve Maximal Lumen gain

De Novo Lesion

Average Area of Lumen
$7.0 \mathrm{~mm}^{2}$

After Initial OA
After Subsequent DA

Average Area of Lumen
$8.2 \mathrm{~mm}^{2}, 17 \%$ gain

Average Area of Lumen $15.0 \mathrm{~mm}^{2}, 114 \%$ gain

More Lumen Gain After Atherectomy Higher Patency Rate

Krishna Rocha-Singh, MD
Chief Scientific Officer
Prairie Heart Institute of Illinois
Brian DeRubertis MD, FACS
Associate Professor of Surgery UCLA Division of Vascular Surgery
-Consent 250 subjects
-Goal Enrollment 150 subjects
-10 U.S. Sites
-Lesion length $8-18 \mathrm{~cm}$

- Occlusion length $6-10 \mathrm{~cm}$
-3 German Sites
-Lesion length up to 25 cm

Primary Safety Endpoint:

Freedom from (MAEs) defined as freedom from flow-limiting dissections (D-F), vessel perforations requiring stenting or stentgrafts, unplanned amputation, intra-procedure distal atheroembolization and clinically-driven TVR in subjects with long, moderate and severely calcified FP lesions and/or occlusions through 30 -day follow-up visit.

REALITY Update (9/11/17)

- Eight U.S. sites/ 3 German Sites activated
- All sites have begun enrollment
- 39 patients enrolled

A Real Efficient Device

Atherectomy device

Capital equipment required?

Capital equipment
reln *
Diamondback

Thank you

